Fonksiyon çeşitleri - Örnek sorular

» Fonksiyon çeşitleri - Örnek sorular

Sponsorlu Bağlantılar

Tüm dijital fotoğraf makinesi fırsatları için tıklayın !

 

Fonksiyon Çeşitleri ve Özellikleri 
A. TANIM 
¹ Æ ve B ¹ Æ olmak üzere, A dan B ye bir b bağıntısı verilmiş olsun. A nın her elemanı B nin elemanlarıyla en az bir kez ve en çok bir kez eşleniyorsa bu bağıntıya fonksiyon denir. Fonksiyonlar f ile gösterilir.

" x Î A ve y Î B olmak üzere, A dan B ye bir f fonksiyonu f : A ® B ya da x ® f(x) = y biçiminde gösterilir.

Yukarıda A dan B ye tanımlanan f fonksiyonu
f = {(a, 1), (b, 1), (c, 2)..ç (d, 3)}
biçiminde de gösterilir.
Ü Her fonksiyon bir bağıntıdır. Fakat her bağıntı fonksiyon olmayabilir.
Ü Görüntü kümesi değer kümesinin alt kümesidir.

Ü s(A) = m ve s(B) = n olmak üzere,
 

1-A dan B ye nm tane fonksiyon tanımlanabilir. 
2-B den A ya mn tane fonksiyon tanımlanabilir. 
3-A dan B ye tanımlanabilen fonksiyon olmayan bağıntıların sayısı 2m . n – nm dir. 


Ü Grafiği verilen bir bağıntının fonksiyon olup olmadığını anlamak için, y eksenine paralel doğrular çizilir. Bu doğrular fonksiyonun belirttiği eğride en az bir ve en çok bir noktayı kesi-yorsa verilen bağıntı x ten y ye bir fonksiyondur.


B. FONKSİYONLARDA DÖRT İŞLEM
f ve g birer fonksiyon olsun.

f : A ® IR 
g : B ® IR

olmak üzere, 



i) f ± g: A Ç B ® IR

(f ± g)(x) = f(x) ± g(x)
 
ii) f . g: A Ç B ® IR 

(f . g)(x) = f(x) . g(x)
 

 

C. FONKSİYON ÇEŞİTLERİ



1. Bire Bir Fonksiyon
Bir fonksiyonda farklı elemanların görüntüleri de farklıysa fonksiyon bire birdir.
" x1, x2 Î A için, f(x1) = f(x2)iken
x1 = x2 ise f fonksiyonu bire birdir.

Ü s(A) = m ve s(B) = n (n ³ m) olmak üzere, 



A dan B ye tanımlanabilecek bire bir fonksiyonların sayısı

2. Örten Fonksiyon


Görüntü kümesi değer kümesine eşit olan fonksiyonlara örten fonksiyon denir.
f : A ® B
f(A) = B ise, f örtendir.
Ü s(A) = m olmak üzere, A dan A ya tanımlanabilen bire bir örten fonksiyonların sayısı(turkeyarena.net)
Ü m! = m . (m – 1) . (m – 2) ... 3 . 2 . 1 dir.

3. İçine Fonksiyon
Örten olmayan fonksiyona içine fonksiyon denir.
Ü İçine fonksiyonun değer kümesinde eşlenmemiş eleman vardır.
Ü s(A) = m olmak üzere, A dan A ya tanımlanabilen içine fonksiyonların sayısı 
mm – m! dir.

4. Birim (Etkisiz) Fonksiyon
Her elemanı kendisine eşleyen fonksiyona birim fonksiyon denir.
f : IR ® IR
f(x) = x
birim (etkisiz) fonksiyondur.
Ü Birim fonksiyon genellikle I ile gösterilir.

5. Sabit Fonksiyon
Tanım kümesindeki bütün elemanları değer kümesindeki bir elemana eşleyen fonksiyona sabit fonksiyon denir.

Ü "ΠA ve c Î B için 



f : A ® B
f(x) = c

fonksiyonu sabit fonksiyondur.


Ü s(A) = m, s(B) = n olmak üzere,
A dan B ye n tane sabit fonksiyon tanımlanabilir.

6. Çift ve Tek Fonksiyon
f : IR ® IR
f(– x) = f(x) ise, f fonksiyonu çift fonksiyondur.
f(– x) = – f(x) ise, f fonksiyonu tek fonksiyondur.
Ü Çift fonksiyonların grafikleri Oy eksenine göre simetriktir.
Ü Tek fonksiyonların grafikleri orijine göre simetriktir.


D. EŞİT FONKSİYON 



f : A ® B
g : A ® B

"ΠA için f(x) = g(x) ise, f fonksiyonu g fonksiyonuna eşittir.


E. PERMÜTASYON FONKSİYONU 



f : A ® A
 

olmak üzere, f fonksiyonu bire bir ve örten ise, f fonksiyonuna permütasyon fonksiyon denir.


A = {a, b, c} olmak üzere, f : A ® A
f = {(a, b), (b, c), (c, a)}
fonksiyonu permütasyon fonksiyon olup



F. TERS FONKSİYON
f fonksiyonu bire bir ve örten ise, f nin tersi olan f – 1 de fonksiyondur.



Ü Uygun koşullarda, f(a) = b Û f – 1(b) = a dır.
Ü f : IR ® IR, f(x) = ax + b ise, f – 1(x) =  dır.

Ü 

Ü (f – 1) – 1 = f dir.
Ü (f – 1(x)) – 1 ¹ f(x) tir.
Ü y = f(x) in belirttiği eğri ile y = f – 1(x) in belirttiği eğri y = x doğrusuna göre simetriktir.

Ü B Ì IR olmak üzere, 





 

Ü Ì IR olmak üzere, 





 

G. BİLEŞKE FONKSİYON


1. Tanım

f : A ® B
g : B ® C
olmak üzere, gof : A ® C fonksiyonuna f ile g nin bileşke fonksiyonu denir ve g bileşke f diye okunur.

(gof)(x) = g[f(x)] tir.

2. Bileşke Fonksiyonun Özellikleri
i) Bileşke işleminin değişme özelliği yoktur.

fog ¹ gof
Bazı fonksiyonlar için fog= gof olabilir. Fakat bu bileşke işleminin değişme özelliği olmadığını değiştirmez.turkeyarena.net

ii) Bileşke işleminin birleşme özelliği vardır. 



fo(goh) = (fog)oh = fogoh
 

iii) foI = Iof = f


olduğundan I(x) = x fonksiyonu bileşke işleminin birim (etkisiz) elemanıdır.
iv) fof – 1 = f – 1of = I
olduğundan f nin bileşke işlemine göre tersi f – 1 dir.
v) (fog) – 1 = g – 1of – 1 dir.

 


Related Posts Plugin for WordPress, Blogger...