Üçgen çeşitleri ve adları.

» Üçgen çeşitleri ve adları.

Sponsorlu Bağlantılar

Tüm dijital fotoğraf makinesi fırsatları için tıklayın !

Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir.

 


AB] È[AC]È [BC] = ABC dir. 

Burada;

A, B, C noktaları üçgenin

köşeleri,

[AB], [AC], [BC] doğru parçaları üçgenin

kenarlarıdır.

forum BAC, ABC ve ACB açıları üçgenin iç açılarıdır. 

|BC| = a, |AC| = b, |AB| = c

uzunluklarına üçgenin kenar uzunlukları denir. iç açıların bütünleri olan açılara dış açılar denir.forum


  • DİK ÜÇGEN

 

Bir açısının ölçüsü 90° olan üçgene dik üçgen denir. Dik üçgende 90° nin karşısındaki kenara hipotenüs, diğer kenarlara dik kenar adı verilir. Hipotenüs üçgenin daima en uzun kenarıdır.

şekilde, m(A) = 90°

[BC] kenarı hipotenüs

[AB] ve [AC] kenarları

dik kenarlardır.

 

 

  • PİSAGOR BAĞINTISI

 

Dik üçgende dik kenarların uzunluklarının kareleri toplamı hipotenüsün uzunluğunun karesine eşittir.

ABC üçgeninde  m(A) = 90°

a2=b2+c2

 

 

  • ÖZEL DİK ÜÇGENLER

1. (3 - 4 - 5) Üçgeni

 

Kenar uzunlukları  (3 - 4 - 5) sayıları veya bunların katı olan bütün üçgenler dik üçgendir. (6 - 8 - 10), (9 - 12 - 15), … gibi

 

2. (5 - 12 - 13) Üçgeni

 

Kenar uzunlukları (5 - 12 - 13) sayıları ve bunların katı olan bütün üçgenler dik üçgenlerdir.  (10 - 24 - 26), (15 - 36 - 39), … gibi.

 Kenar uzunlukları 8, 15, 17 sayıları ile orantılı olan üçgenler dik üçgenlerdir.
Kenar uzunlukları 7, 24, 25 sayıları ile orantılı olan üçgenler dik üçgenlerdir.

 

3. İkizkenar dik üçgen

 

ABC dik üçgen |AB| = |BC| = a  |AC| = aÖ2 

m(A) = m(C) = 45° İkizkenar dik üçgende

hipotenüs dik kenarların Ö2 katıdır.

 

4. (30° – 60° – 90°) Üçgeni

 

ABC eşkenar üçgeni yükseklikle ikiye bölündüğünde

ABH ve ACH (30° - 60° - 90°)

üçgenleri elde edilir.

|AB| = |AC| = a

|BH| = |HC| = 
pisagordan  
(30° - 60° - 90°) dik üçgeninde; 30°'nin karşısındaki kenar

hipotenüsün yarısına eşittir. 60° nin karşısındaki kenar,

30° nin karşısındaki kenarın Ö3 katıdır.

5. (30° - 30° - 120°) Üçgeni

(30° - 30° - 120°) üçgeninde 30° lik açıların karşılarındaki kenarlara a dersek 120° lik açının karşısındaki kenar aÖ3  olur.

6. (15° - 75° - 90°) Üçgeni 

(15° - 75° - 90°) üçgeninde

hipotenüse ait yükseklik |AH| = h dersek, hipotenüs 

|BC| = 4h olur.  Hipotenüs kendisine ait yüksekliğin dört

katıdır.

 

 


Related Posts Plugin for WordPress, Blogger...